Neosys

Refroidisseurs de liquide à condensation par air / pompes à chaleur

CONDENSATION PAR AIR

200 - 1000 kW

Neosys | Refroidisseurs de liquide à condensation par air/Pompes à chaleur

- # Des grilles plates, esthétiques et une hauteur très réduite (< 2 m) pour une installation discrète sur le toit pouvant éventuellement éviter la pose d'un pare-vue onéreux autour de l'unité.
- **# Une conception moderne** avec des compresseurs, ventilateurs et pompes invisibles pour une intégration architecturale parfaite.
- # Récupération totale ou partielle de la chaleur obtenue avec deux configurations du désurchauffeur, garantissant la production d'eau chaude gratuite à usage domestique.
- **# Fonctionnement silencieux** grâce aux modules hydrauliques et thermodynamiques montés dans un caisson technique insonorisé.

CARROSSERIE ET CONCEPTION

- # Carrosserie en acier galvanisé peint en blanc.
- # Partie supérieure plane pour cacher les ventilateurs et réduire le niveau sonore.
- # Conception compacte, grâce à des batteries en forme de V.
- # Les composants hydrauliques et thermodynamiques sont installés à l'intérieur du caisson pour réduire le niveau sonore et les protéger contre les conditions climatiques.
- # Panneau électrique avec ouverture sur le dessus qui permet de protéger les ingénieurs de maintenance de la pluie ou de la neige lors des opérations de mise en service et de maintenance.
- # Grille de protection esthétiques.

eDRIVE

Pompe de démarrage à vitesse variable qui module le débit d'eau à travers l'évaporateur et réduit la facture énergétique :

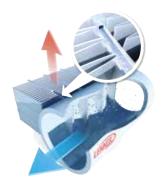
- # Économise la consommation d'énergie en charge partielle et en période d'arrêt, pouvant permettre une réduction de 75% de la consommation de la pompe.
- # Économies sur le coût initial du système, en raison du nombre de pompes et des raccords de tuyauteries inférieur à celui nécessaire pour les systèmes primaires-secondaires.
- # Flexibilité et précision de pilotage de la pompe : démarrage et arrêt fluides, changement de vitesse progressif, précision et stabilité du pilotage.
- # Réductions des phénomènes de stress engendrés sur la pompe et les tuyauteries pour une longévité accrue.
- # Élimination du courant de démarrage grâce au régulateur de fréquence qui permet une alimentation graduelle du moteur de la pompe.

CONFORT ACOUSTIQUE

- # Fonctionnement silencieux (standard) grâce à une conception compacte, des compresseurs et des pompes à faible niveau sonore, et des ventilateurs hélicoïdaux haute performance, tous installés dans un caisson fermé.
- # Le système Active Acoustic Attenuation avec Vitesse du ventilateur variable permet une adaptation progressive de l'unité à la charge du bâtiment tout en respectant les exigences en matière de niveau sonore et les limites de fonctionnement (en option).

RÉGULATION

- # Régulateur électronique Climatic et paramètres de régulation intelligents optimisant l'efficacité en charge partielle.
- # Solutions de communication intégrées pour plus de flexibilité (maître/esclave, Modbus, BACnet, LonWorks®).
- # Afficheur avancé DC, équipé d'un écran graphique assurant l'accès aux paramètres utilisateur principaux, avec deux options d'affichage :
 - Afficheur à distance
 - Afficheur de service



SYSTÈME THERMODYNAMIQUE

- # Compresseurs multi-scroll, montés en tandem ou trio pour efficacité saisonnière sans égal.
- # Batterie condenseur à micro-canaux en aluminium (version froid seul).
- # Ventilateurs à vitesse variable de conception exclusive avec paliers céramiques hybrides SKF qui augmentent la durée de vie et réduisent le niveau sonore.
- # Faible quantité d'eau dans le circuit hydraulique pour une réduction du temps pour atteindre le point de consigne.
- # Dégivrage dynamique (breveté) pour limiter le nombre de cycles de dégivrage.
- # Échangeurs thermiques à eau et isolé thermiquement en plaques d'acier inoxydable avec brasage en cuivre.
- # Jusqu'à quatre circuits indépendants.
- # Désurchauffeur (en option) : échangeur thermique à plaques supplémentaire sur chaque circuit pour récupérer la chaleur évacuée et fournir de l'eau chaude gratuite pour les besoins sanitaires et industriels.
- # Pompes simples ou doubles.

SUPERVISION À DISTANCE

- # Connexion via **LennoxHydrocontrol**, une interface conviviale qui permet la supervision locale de l'intégralité du système hydraulique.
- # Connectivité par **LennoxCloud** (PORTAIL WEB LENNOX pour unités / multisites).
- # GTC par:
 - LennoxOneWeb.
 - ADALINK II* (SERVEUR WEB LENNOX Un site / plusieurs unités).
 - LennoxTouch.*
 - * Vérifier la disponibilité de cette fonction dans votre pays.

Neosys | Nomenclature et données générales

$N_{\text{(A)}} \ A_{\text{(B)}} \ C_{\text{(C)}} \ 200_{\text{(D)}} \ D_{\text{(E)}} \ N_{\text{(F)}} \ M_{\text{(G)}} \ 7_{\text{(H)}} \ M_{\text{(I)}}$

- (A) N = Neosys
- (B) A = Condensation par air
- (C) C = Mode refroidissement H = Mode pompe à chaleur
- (D) 200 = Puissance frigorifique en kW
- (E) Nombre de circuits **S** = 1 circuit **D** = 2 circuits **T** = 3 circuits **F** = 4 circuits
- (F) N = Non gainée
- (G) M = Fluide frigorigène R410A
- (H) 7 = Numéro de révision
- (I) M = 400 V/3/50 Hz

Version à condensation par air

Unités froid seul

Neosy	s - NAC	200D	230D	270D	300D	340D	380D	420D	480D		
Perform	mances thermiques nominales - Mode refroidisseme	ent				•					
Puissar	nce frigorifique (1)	208,2	235,7	272,8	307,6	351,3	387,3	429,6	489,9		
Puissar	nce absorbée totale ⁽¹⁾	kW	72,1	85,7	106,7	106,9	125,6	149,1	152,3	174,3	
EER (1)			2,89	2,75	2,56	2,88	2,80	2,60	2,82	2,81	
Application Confort	Coefficient d'efficacité énergétique saisonnière (2) Coefficient d'efficacité énergétique saisonnière		4,72	4,62	4,36	4,73	4,70	4,57	4,86	4,79	
	Efficacité énergétique saisonnière (3)	%	186	182	171	186	185	180	191	188	
Application process	Ratio de performance énergétique saisonnière ⁽⁴⁾ SEPR - Haute température (7°C)		5,53	5,26	5,29	5,51	5,68	5,50	5,65	5,55	
	Ratio de performance énergétique saisonnière ⁽⁵⁾ SEPR - Température moyenne (-8°C)		3,88	3,85	3,82	3,82	3,99	3,91	3,92	3,99	
	mances thermiques nominales - Mode chauffage					1	1	1	1		
	nce calorifique ⁽¹⁾	kW	-	-	-	-	-	-	-	-	
	nce absorbée totale ⁽¹⁾	kW	-	-	-	-	-	-	-	-	
COP (1)			-	-	-	-	-	-	-	-	
tion	Coefficient de performance saisonnier ⁽⁶⁾ SCOP		-	-	-	-	-	-	-	-	
Application Confort	Efficacité énergétique saisonnière ⁽⁷⁾ ns,h	%	-	-	-	-	-	-	-	-	
	Classe d'efficacité énergétique saisonnière ⁽⁸⁾		-	-	-	-	-	-	-	-	
Caracte	éristiques acoustiques										
Niveau	global de puissance acoustique - Unité standard	dB(A)	89,2	89,3	89,7	91,2	91,3	91,4	92,5	92,6	
Caracte	éristiques électriques										
Puissar	nce maximale	kW	96,7	113,7	135,0	147,1	166,2	191,7	205,9	231,4	
Intensi	té maximale	Α	169,6	199,0	225,0	247,3	277,2	321,3	344,1	388,2	
Intensi	té de démarrage	Α	397,0	449,7	475,7	498,0	527,9	572,0	594,8	638,9	
Couran	t de court-circuit	kA	10	10	50	50	50	50	50	50	
Circuit	frigorifique										
Nombr	e de circuits		2	2	2	2	2	2	2	2	
Nombr	e de compresseurs		4	4	4	4	5	5	6	6	
Charge	totale de fluide frigorigène - R410a	kg	25,6	25,5	29,3	35,2	37,1	39,0	52,4	55,3	
Évapor	rateur										
Débit c	l'eau nominal	35,80	40,60	46,90	52,90	60,40	66,60	73,90	84,30		
Perte c	le charge nominale	kPa	43	54	56	48	35	42	50	49	
Raccor	dement hydraulique										
Туре			Victaulic								
Diamèt	re		4"	4"	4"	4"	5"	5"	5"	5"	

⁽¹⁾ Données certifiées EUROVENT, conformément à la norme EN 14511.

Mode refroidissement: Température d'eau évaporateur = 12/7 °C | Température de l'air extérieur = 35 °C / Mode chauffage: Température d'eau condenseur = 40/45 °C | Température de l'air extérieur = 7°C | (2) SEER conformément à la norme EN 14825. | (3) Selon le règlement (UE) 2016/2281 en matière d'écoconception applicable au refroidissement industriel, la température de sortie d'eau est fixée à 7°C, conformément à la norme EN 14825. | (4) Selon le règlement (UE) 2016/2281 en matière d'écoconception applicable aux refroidisseurs industriels, la température de sortie est fixée à 7°C, conformément à la norme EN 14825. | (5) Selon le règlement (UE) 2015/1095 en matière d'écoconception applicable aux refroidisseurs industriels, la température de sortie d'eau fixée à -8 °C, conformément à la norme EN 14825. | (6) SCOP conformément à la norme EN 14825. Les performances en mode chauffage sont définies pour des conditions climatiques moyennes. | (7) Selon le règlement (UE) 813/2013 en matière d'écoconception applicable aux appareils de chauffage, température de sortie d'eau fixée à 7°C, conformément à la norme EN 14825, conditions climatiques moyennes. | (8) Selon la réglementation sur l'étiquetage énergétique EU 811/2013 sur les appareils de chauffage.

$N_{\text{(A)}} \ A_{\text{(B)}} \ C_{\text{(C)}} \ 200_{\text{(D)}} \ D_{\text{(E)}} \ N_{\text{(F)}} \ M_{\text{(G)}} \ 7_{\text{(H)}} \ M_{\text{(I)}}$

- (A) N = Neosys
- (B) A = Condensation par air
- (C) C = Mode refroidissement H = Mode pompe à chaleur
- (D) 200 = Puissance frigorifique en kW
- (E) Nombre de circuits S = 1 circuit D = 2 circuits T = 3 circuits F = 4 circuits
- (F) N = Non gainée
- (G) **M** = Fluide frigorigène R410A
- (H) **7** = Numéro de révision
- (I) M = 400 V/3/50 Hz

Version à condensation par air

Unités froid seul

				İ	i	İ		İ	İ	1
Neosy	rs - NAC		540D	600D	640D	680F	760F	840F	960F	1080F
Perfori	mances thermiques nominales - Mode refroidissem	ent					•			
Puissar	nce frigorifique ⁽¹⁾	kW	530,9	605,0	626,9	702,6	774,7	859,1	979,8	1061,9
Puissar	nce absorbée totale ⁽¹⁾	kW	201,9	219,1	226,1	251,3	298,2	304,6	348,7	403,8
EER (1)			2,63	2,76	2,77	2,80	2,60	2,82	2,81	2,63
ation fort	Coefficient d'efficacité énergétique saisonnière (2) Coefficient d'efficacité énergétique saisonnière		4,62	4,59	4,60	4,63	4,55	4,84	4,78	4,60
Application Confort	Efficacité énergétique saisonnière (3)	%	182	181	181	182	179	191	188	181
Application process	Ratio de performance énergétique saisonnière ⁽⁴⁾ SEPR - Haute température (7°C)		5,52	5,51	5,50	5,68	5,51	5,65	5,55	5,50
Applic	Ratio de performance énergétique saisonnière (5) SEPR - Température moyenne (-8°C)		3,81	4,04	4,06	3,95	3,86	3,88	3,95	3,92
	mances thermiques nominales - Mode chauffage									
Puissar	nce calorifique ⁽¹⁾	kW	-	-	-	-	-	-	-	-
Puissance absorbée totale (1)			-	-	-	-	-	-	-	-
COP (1)			-	-	-	-	-	-	-	-
Application Confort	Coefficient de performance saisonnier ⁽⁶⁾ SCOP		-	-	-	-	-	-	-	-
	Efficacité énergétique saisonnière ⁽⁷⁾	%	-	-	-	-	-	-	-	-
-	Classe d'efficacité énergétique saisonnière (8)		-	-	-	-	-	-	-	-
Caract	éristiques acoustiques									
Niveau	global de puissance acoustique - Unité standard	dB(A)	93,0	94,0	94,0	94,3	94,4	95,5	95,6	96,0
Caract	éristiques électriques									
Puissar	nce maximale	kW	258,1	288,4	288,4	2 x 166,2	2 x 191,7	2 x 205,9	2 x 231,4	2 x 258,1
Intensi	té maximale	Α	431,7	482,8	482,8	2 x 277,23	2 x 321,3	2 x 344,13	2 x 388,2	2 x 431,7
Intensi	té de démarrage	А	765,9	817,0	817,0	2 x 527,93	2 x 572	2 x 594,83	2 x 638,9	2 x 765,9
Courar	nt de court-circuit	kA	50	50	50	50	50	50	50	50
Circuit	frigorifique									
Nombr	re de circuits		2	2	2	4	4	4	4	4
Nombr	e de compresseurs		6	6	6	10	10	12	12	12
Charge	totale de fluide frigorigène - R410a	kg	59,8	73,4	69,0	74,2	78,0	104,8	110,6	119,6
Évapoi	rateur			•					•	
Débit o	d'eau nominal	m³/h	91,30	104,10	107,90	120,90	133,30	147,80	168,60	182,70
Perte c	le charge nominale	kPa	57	59	58	57	51	56	66	71
	dement hydraulique				<u> </u>					
Туре						Victo	aulic			
Diamèt	tre		6"	6"	6"	8"	8"	8"	8"	8"

⁽¹⁾ Données certifiées EUROVENT, conformément à la norme EN 14511.

Mode refroidissement: Température d'eau évaporateur = 12/7 °C | Température de l'air extérieur = 35 °C / Mode chauffage: Température d'eau condenseur = 40/45 °C | Température de l'air extérieur = 7°C | (2) SEER conformément à la norme EN 14825. | (3) Selon le règlement (UE) 2016/2281 en matière d'écoconception applicable au refroidissement industriel, la température de sortie d'eau est fixée à 7°C, conformément à la norme EN 14825. | (4) Selon le règlement (UE) 2016/2281 en matière d'écoconception applicable aux refroidisseurs industriels, la température de sortie est fixée à 7°C, conformément à la norme EN 14825. | (5) Selon le règlement (UE) 2015/1095 en matière d'écoconception applicable aux refroidisseurs industriels, la température de sortie d'eau fixée à -8 °C, conformément à la norme EN 14825. | (6) SCOP conformément à la norme EN 14825. Les performances en mode chauffage sont définies pour des conditions climatiques moyennes. | (7) Selon le règlement (UE) 813/2013 en matière d'écoconception applicable aux appareils de chauffage, température de sortie d'eau fixée à 7°C, conformément à la norme EN 14825, conditions climatiques moyennes. | (8) Selon la réglementation sur l'étiquetage énergétique EU 811/2013 sur les appareils de chauffage.

Neosys | Nomenclature et données générales

$N_{\text{(A)}} \ A_{\text{(B)}} \ C_{\text{(C)}} \ 200_{\text{(D)}} \ D_{\text{(E)}} \ N_{\text{(F)}} \ M_{\text{(G)}} \ 7_{\text{(H)}} \ M_{\text{(I)}}$

- (A) N = Neosys
- (B) A = Condensation par air
- (C) C = Mode refroidissement H = Mode pompe à chaleur
- (D) 200 = Puissance frigorifique en kW
- (E) Nombre de circuits S = 1 circuit D = 2 circuits T = 3 circuits F = 4 circuits
- (F) N = Non gainée
- (G) M = Fluide frigorigène R410A
- (H) 7 = Numéro de révision
- (I) M = 400 V/3/50 Hz

Version à condensation par air

Pompes à chaleur

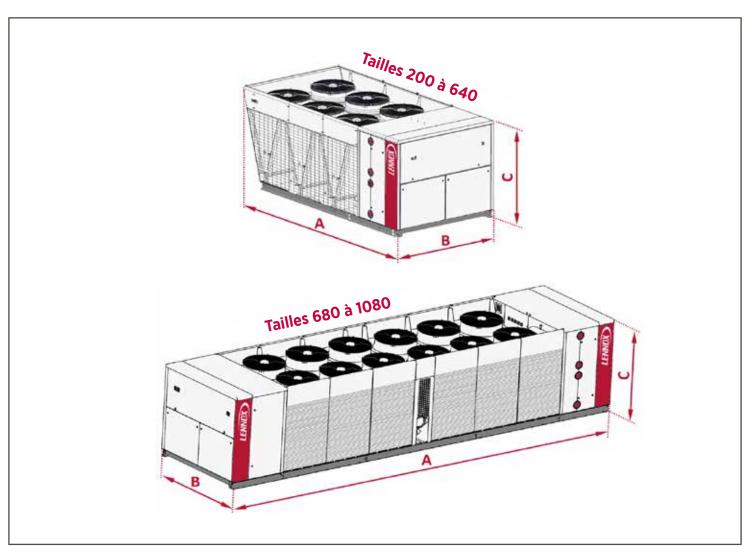
Neosy	/s - NAH	200D	230D	270D	300D	340D	380D	420D	480D	
Perfor	mances thermiques nominales - Mode refroidisse	ment								
	nce frigorifique ⁽¹⁾	kW	191,0	217,0	265,9	295,4	323,6	360,9	398,5	442,2
	nce absorbée totale ⁽¹⁾	kW	73,5	92,7	104,7	117,1	131,8	133,4	159,1	183,5
EER (1)			2,60	2,34	2,54	2,52	2,46	2,71	2,50	2,41
Application Confort	Coefficient d'efficacité énergétique saisonnière (Coefficient d'efficacité énergétique saisonnière					4,30	4,45	4,80	4,66	4,63
	Efficacité énergétique saisonnière ⁽³⁾ ηs,c	%	166	161	173	169	175	189	183	182
Application process	Ratio de performance énergétique saisonnière ⁽⁴⁾ SEPR - Haute température (7°C)		5,35	5,02	5,29	5,25	5,40	5,42	5,27	5,12
Appli	Ratio de performance énergétique saisonnière ⁽⁵ SEPR - Température moyenne (-8°C)	-	-	-	-	-	-	-	-	
	mances thermiques nominales - Mode chauffage			,		_		,	,	,
	nce calorifique ⁽¹⁾	kW	218,5	234,9	290,8	339,0	363,3	404,5	452,5	499,2
	nce absorbée totale ⁽¹⁾	kW	71,7	84,0	104,3	112,7	121,3	132,9	151,7	169,5
COP (1)			3,05	2,80	2,79	3,01	3,00	3,04	2,98	2,95
tion rt	Coefficient de performance saisonnier ⁽⁶⁾ SCOP		3,44	3,32	3,39	3,45	3,47	3,39	3,33	3,35
Application Confort	Efficacité énergétique saisonnière ⁽⁷⁾ ηs,h	%	134	130	132	135	136	132	130	131
	Classe d'efficacité énergétique saisonnière (8)		A+	A+	A+	A+	Α+	A+	A+	A+
Caract	éristiques acoustiques									
Niveau	global de puissance acoustique - Unité standard	dB(A)	89,2	89,3	91,1	91,2	91,3	92,4	91,5	91,6
Caract	éristiques électriques									
Puissa	nce maximale	kW	96,7	113,7	138,6	155,6	166,2	180,4	205,9	231,4
Intensi	té maximale	Α	169,6	199,0	232,6	262,0	277,2	300,1	344,1	388,2
Intensi	té de démarrage	Α	397,0	449,7	483,3	512,7	527,9	527,4	594,8	638,9
Courar	nt de court-circuit	kA	10	10	50	50	50	50	50	50
Circuit	frigorifique									
Nombi	re de circuits		2	2	2	2	2	2	2	2
Nombi	re de compresseurs		4	4	4	4	5	6	6	6
Charge	e totale de fluide frigorigène - R410a	kg	52,0	52,0	81,0	81,0	83,0	102,0	102,0	104,0
Évapo	rateur				·	·	·			
Débit o	d'eau nominal	m³/h	33,07	37,52	45,60	51,29	55,96	62,29	68,46	76,88
Perte o	de charge nominale	kPa	37	47	53	51	28	34	41	36
Racco	rdement hydraulique									
Туре						Vict	aulic			
Diamè	tre		4"	4"	4"	4"	5"	5"	5"	5"

⁽¹⁾ Données certifiées EUROVENT, conformément à la norme EN 14511.

Mode refroidissement: Température d'eau évaporateur = 12/7 °C | Température de l'air extérieur = 35 °C / Mode chauffage: Température d'eau condenseur = 40/45 °C | Température de l'air extérieur = 7°C | (2) SEER conformément à la norme EN 14825. | (3) Selon le règlement (UE) 2016/2281 en matière d'écoconception applicable au refroidissement industriel, la température de sortie d'eau est fixée à 7°C, conformément à la norme EN 14825. | (4) Selon le règlement (UE) 2016/2281 en matière d'écoconception applicable aux refroidisseurs industriels, la température de sortie est fixée à 7°C, conformément à la norme EN 14825. | (5) Selon le règlement (UE) 2015/1095 en matière d'écoconception applicable aux refroidisseurs industriels, la température de sortie d'eau fixée à -8 °C, conformément à la norme EN 14825. | (6) SCOP conformément à la norme EN 14825. Les performances en mode chauffage sont définies pour des conditions climatiques moyennes. | (7) Selon le règlement (UE) 813/2013 en matière d'écoconception applicable aux appareils de chauffage, température de sortie d'eau fixée à 7°C, conformément à la norme EN 14825, conditions climatiques moyennes. | (8) Selon la réglementation sur l'étiquetage énergétique EU 811/2013 sur les appareils de chauffage.

Version à condensation par air

Unités froid seul


Neosys - NAC		200D	230D	270D	300D	340D	380D	420D	480D	540D	600D	640D	680F	760F	840F	960F	1080F
А		3593		4623		5653			6683		9040		11100				
В	mm	2280		2280		2280			2280		2280		2280				
С			2025			2025			2025		20	25	19	65		1965	
Poids des unités standard																	
Unité de base	kg	1983	2011	2278	2676	3003	3045	3580	3661	3712	4152	4175	6770	6854	7981	8141	8229

Version à condensation par air

Pompes à chaleur

Neosys - NAH		200D	230D	270D	300D	340D	380D	420D	480D		
Α		35	93		4518		5548				
В	mm	22	80		2280		2280				
С		20	25		2025		2025				
Poids des unités :	standa	rd									
Unité de base	kg	2176	2175	2906	3380	3349	4020	4066	4148		

